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INTRODUCTION 

 

Several of the concepts under study for Generation-

IV reactors are VHTR or HTGR designs with coated 

particle fuel randomly dispersed within pebbles or fuel 

compacts [1]. Explicit modeling of the double 

heterogeneity introduced by the coated particle fuel has 

involved fixed lattices of particles [2,3], lattices with 

stochastic displacements of the particles [4], and random 

arrangements generated using the random sequential 

addition (RSA) method [5]. In this paper, we discuss the 

computational characteristics of the RSA method, provide 

an improved “fast RSA” method, and comment on the 

application of RSA to the random packing of coated fuel 

particles.  

 

THE BASIC RSA METHOD 

 

The basic RSA method [6] is sequential and static, in 

that particles are placed in a container one-at-a-time into a 

fixed position. The particles are not subsequently moved. 

For the case of 3D geometry and spherical particles, the 

maximum attainable particle packing fraction is .38 [7], 

which is much lower than the values of .74 for a close-

packed face-centered cubic lattice, .637 from random 

packing experiments, and .64 from random close-packing 

computer experiments based on molecular-dynamics-like 

algorithms [7]. 

The basic RSA method for packing N spheres of 

radius R into a container can be described as: 

 

K = 0 

While  K < N  

a. Randomly select a position XYZ within the 

container (such that XYZ is at least a 

distance R from the container boundaries) 

b. If a sphere centered at XYZ does not overlap 

any of the previous K-1 spheres, then  

• Add XYZ to the list of sphere 

centers 

• Increment K by 1 

Otherwise, 

• Reject XYZ 

 

Because of Step b, checking all previous spheres for non-

overlap, the method scales as O(N
2
) with the number of 

spheres. The scaling with packing fraction is nonlinear, 

such that packing fractions above ~.30 can take very large 

amounts of computing time (cf. Fig. 2). 

 

AN IMPROVED FAST RSA METHOD 

 

An obvious improvement to the basic RSA method is 

to modify Step b to check only nearest-neighbor spheres 

for overlap, rather than an exhaustive check of all 

previous spheres. This can be readily achieved by 

defining a lattice with spacing h  2R/ 3. Each lattice box 

can contain at most 1 sphere center, and only m= R/h +1 

neighboring boxes need be checked for overlapping 

spheres in the ±x, ±y, and ±z directions. Lists are 

maintained to keep track of the spheres contained in each 

lattice box as well as the empty lattice boxes. With these 

modifications, the improved fast RSA method is: 

 

K = 0 

While  K < N 

a. Randomly select a lattice box L from the list 

of empty lattice boxes 

b. Randomly select a position XYZ within 

lattice box L 

c. If the sphere centered at XYZ does not 

overlap any spheres with centers in the m 

neighboring boxes in the ±x, ±y, and ±z 

directions (and XYZ is at least a distance R 

from the container boundary), then 

• Add XYZ to the list of sphere 

centers 

• Increment K by 1 

• Delete lattice box L from the list of 

empty lattice boxes 

• Assign sphere K as contained 

within lattice box L 

Otherwise, 

• Reject XYZ 

 

Because previous spheres need be checked for overlap 

only for a fixed number of neighboring lattice boxes, the 

improved RSA method scales as O(N) rather than O(N
2
) 

with the number of spheres. 

 

NUMERICAL RESULTS 

 

Both the Basic RSA and Fast RSA methods were 

tested for sphere volume fractions ranging from 0.01 to 

0.32 and numbers of spheres ranging from 1000 to 16000. 

Outer container volumes included boxes, spheres, and 

cylinders. All tests were performed on a 2.5 GHz Apple 

G5 processor using the g95 Fortran-90 compiler with –O3 



optimization. Figure 1 shows the total CPU time vs. the 

number of spheres for two sphere volume fractions, .25 

and .30, for both methods with a cubical container. The 

Basic RSA method clearly shows O(N
2
) scaling, with 

very large increases in CPU time for 1000s of spheres, 

while the Fast RSA method shows modest linear scaling 

with large numbers of spheres. The very large nonlinear 

increase in CPU time with volume fraction is apparent in 

Figure 2, which shows the total CPU time vs. volume 

fraction for 8000 and 16000 spheres for both methods 

with a cubical container. For the Basic RSA method, CPU 

times become prohibitively large for volume fractions 

above .30 and numbers of spheres greater than 10000. 

CPU time for the Fast RSA method also increases 

nonlinearly with volume fraction, but remains reasonable 

due to the improved scaling with the number of spheres. 

 

DISCUSSION 

 

The Basic RSA and improved Fast RSA methods for 

sphere packing were tested over a range of sphere volume 

fractions and numbers of spheres. The Fast RSA method 

provides O(N) scaling with the number of spheres, rather 

than O(N
2
) scaling for the Basic RSA method, and gives 

significant computational speedups when many thousands 

of spheres need to be randomly positioned. 

For practical application of the RSA method to the 

random packing of coated fuel particles, either the Basic 

or Fast RSA methods can be used when the sphere 

volume fraction is small (<.3) or when the number of 

spheres to be randomly packed is not too large (<10,000). 

In [8], for example, 9394 fuel kernels were packed into an 

HTGR pebble with a fuel kernel volume fraction of only 

.0576. With such a low volume fraction, CPU time for 

either the Basic or Fast RSA method is less than 1 second. 

In [4,5], where 6050 fuel kernels were packed into a 

VHTR cylindrical fuel compact with a kernel volume 

fraction of .289, the Basic and Fast RSA required less 

than 10 seconds. Thus for current designs of coated fuel 

particle systems, the Basic RSA method is quite adequate 

for random sphere positioning due to the modest 

combination of sphere volume fraction and number of 

spheres.  

If, however, the basic specifications for coated 

particle fuel were to change, for example by reducing the 

enrichment and using more fuel kernels of the same size, 

or by using larger fuel kernels in the same sized pebble or 

compact, then the volume fraction or number of spheres 

may grow into the regime where the Fast RSA method 

may be required to achieve reasonable computing times. 

Application of the RSA method to other areas, such as 

random vapor bubbles in a liquid, may also require the 

use of the Fast RSA method. 
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Figure 1.   Scaling of total CPU time vs. the number of spheres for the Basic and Fast RSA methods, for 

volume fractions .25 and .3, with a cubical container. 

Figure 2.  Scaling of total CPU time vs. sphere volume fraction for the Basic and Fast RSA 

methods, for 8000 and 16000 spheres, with a cubical container. 


